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ABSTRACT
Memristor crossbar arrays were fabricated based on a Ti/HfO2/Ti stack that exhibited electroforming-free behavior and low device variability
in a 10 x 10 array size. The binary states of high-resistance-state and low-resistance-state in the bipolar memristor device were used for the
synaptic weight representation of a binarized neural network. The electroforming-free memristor was confirmed as being suitable as a binary
synaptic device because of its higher device yield, lower variability, and less severe malfunction (for example, hard break-down) than the
electroformed memristors based on a Ti/HfO2/Pt structure. The feasibly working binarized neural network adopting the electroforming-free
binary memristors was demonstrated through simulation.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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Memristors have been extensively studied as a next-generation
nonvolatile memory candidate, known as resistive random access
memory (ReRAM) by virtue of their excellent features, such as
ultrafast speed (<100ps), long endurance (up to 1012 write-erase
cycles), and scalability (scale down to 2nm contact dimension)
with a simple structure.1–4 Recently, there have been many studies
focused on the possible application of memristors to newly devel-
oping fields, such as neuromorphic computing, pattern recogni-
tion, sensory device, and security applications.3,5–20 Such applica-
tions are mainly enabled by the analog behavior of memristors due
to their working principle – the formation and annihilation of a con-
ducting filament (CF) or channel (conduction path for electrons)
composed of mobile ions or vacancies. The resistance of the mem-
ristor device could be reconfigured by changing the internal distri-
bution of (defective) ions or vacancies in a CF by using an electric
field aided by Joule heating. This ion-species-related reconfiguration
process resembles the analog behavior of the biological synapse in
the human’s neural system.17 In this regard, memristive switching
in an analog manner has been used for synaptic devices in var-
ious neural network hardware. However, multilevel switching of

a memristor to mimic the analog synapse still remains challeng-
ing, because a memristor controlled by internal ion distribution is
inherently confronted with variability issues.3,21 Many of the vari-
ability issues are related with the electroforming (EF) step, which
changes the highly insulating pristinememristor to a switchable state
by either voltage- or current-sweep with appropriate compliance
values.22,23

By contrast, the digital-like operation of the memristor, i.e.,
having two resistance states of high-resistance state (HRS) and low-
resistance state (LRS), suffers less from variability issues, and could
be employed for binarized neural networks (BNNs), which is one
of the simplest versions of a neural network (NN).21,24 BNN only
uses binary synaptic weights without requiring the calculation of
any high-precision numbers such as 24-, 32-, or 64-bit, which a
deep neural network (DNN) normally uses for image recognition or
other machine learning applications. The advantage of BNN com-
pared to other NNs is that the binarized operation can be per-
formed simply by bitwise logic rather than complicated multiply-
accumulate (MAC) circuits, which saves substantial energy and
time for the calculation.21 Although the low precision and low
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area-efficiency of BNN could be disadvantageous, the recognition
rate loss of BNN is sufficiently small to make it useful in the
application of edge device or Internet of Things (IoTs) possessing
low-precision functions of machine learning.21 Even for the BNN,
nonetheless, the presence of reliable memristors with low error rate
is necessary.

Therefore, in this work, the “electroforming-free” (“EF-free”)
memristor crossbar array (CBA) was fabricated, and it was applied
to the BNN for simple 3-bit pattern recognition. The EF-free binary
memristor CBA is considered to be suitable as a BNN hardware,
since binary operation could be performed in parallel while the
positive features of memristors remained effective. Technologically,
the EF process poses several issues, such as the current overshoot,
non-uniform electroforming bias distribution,23 and an over-sized
peripheral circuit for the high-voltage drive.22 The EF-free mem-
ristor can mitigate such issues, which therefore greatly releases a
burden for the realization of a memristor CBA. As the EF is an
electrical stress process that changes the highly insulating pris-
tine oxide layer to a relatively defective and electrically switchable
layer, the switchable state can be alternatively acquired by a chem-
ical mean. In this work, the inert Pt electrode of the EF-necessary
Ti/HfO2/Pt memristor was changed to a chemically reactive Ti
electrode, resulting in the Ti/HfO2/Ti structure. Such a seemingly
symmetrical structure may seem inappropriate for use in bipo-
lar resistance switching (BRS) mode, but as shown in this work,
it demonstrated highly feasible BRS characteristics with EF-free
performance.

Memristor CBAs were fabricated having a square junction with
widths varying from 4 to 20 µm. Figure 1(a) shows the optical
microscopic image of the 10×10 CBAs (total 100 cells included)
with a 5 µm memristor junction width. Electron-beam evaporated
Ti(20nm)/Pt(40nm) or Pt(40nm) metal lines were used as bottom
electrode, patterned by the lift-off process with photolithography.
Approximately 3nm-thick HfO2 thin films were deposited by ther-
mal atomic layer deposition (ALD) using tetrakis-ethylmethylamino
hafnium (TEMA-Hf) and deionized water vapor as a metal organic
precursor and an oxygen source, respectively, at a wafer tempera-
ture of 250○C. A Pt(40nm)/Ti(20nm) top electrode was deposited
by electron-beam evaporation through photolithographic pattern-
ing in order to form a crossbar junction device. Figure 1(b)
shows a schematic diagram of the device stack. The two-terminal
current - voltage (I - V) characteristics of the devices were measured
using a semiconductor parameter analyzer (HP-4155A), as shown
at the bottom of Fig. 1(b). A quasi-DC voltage sweep (sweep rate
from 100 to 102V/sec) was applied to the top electrode with the bot-
tom contact grounded at ambient temperature in all of the electrical
measurements. Figure 1(c) shows DC I-V curves in log I – linear V
scale as measured from the ten randomly chosen devices in the CBA,
which is composed of the Ti/HfO2/Ti memristors. The EF process
was not necessary for the initial resistive switching from the vir-
gin state. Current compliance (500 µA in this curves) was used for
the set transition from the HRS to the LRS. Figure 1(d) shows the
resistance values of LRS and HRS, read at +0.3V from three-times
I-V measurement in the ten devices. Lower variability is observed
in the resistance values of LRS than in those of HRS, which could
be beneficial in the BNNs. It should be noted that the CBA does
not adopt any selector, so there could be a rather significant sneak
current problem involved. Nonetheless, all the randomly selected

FIG. 1. Fabricated forming-free memristor crossbar array. (a) Optical microscopic
image of 10x10 crossbar array with 5µm junction width. The ten contact pads
on the left are the bottom electrodes while the other ten on the right are the
top electrodes. (b) Schematic diagram of the device structure and measure-
ment set-up. The memristors with a material stack of Pt (40nm)/Ti (20nm)/HfO2
(≥3nm)/Ti (20nm)/Pt (40nm). (c) I-V curves for ten randomly selected devices.
(d) Average and standard deviation of resistance value for low/high resistance
state at a read voltage of (+) 0.3V for three-times switching cycles for ten
devices.

cells perform quite nicely, which would not be the case if the devices
required EF.

Since the synaptic weights of BNNs are either +1 or -1 with no
intermediate values, the two conductance values (inverse of resis-
tance value) can be used as the synaptic weights. Using the conduc-
tance, as opposed to resistance, in BNN is beneficial for mitigating
the relatively high variability problem of the HRS. This is because the
conductance values of the HRS aremuch lower than those of the LRS
(by ∼ two orders of magnitude), the degree of variation also becomes
smaller. The variabilities in the set and reset voltages were much
less severe than those of resistance. (Fig. S1 of online supplementary
material).

The impact of EF-free memristors (Ti/HfO2/Ti) in CBAs was
investigated in 2×2 CBAs. Since there is no additional selector
device or rectifying function in the memristor device itself, the
sneak current into the defective neighboring device in the CBA
could induce larger variability in the resistance state and pro-
gramming voltage. Figure 2 shows I-V loops of ten sets of 2×2
CBAs confirming the yield of the device and its ability to effec-
tively work with defective devices. Normal devices showed typi-
cal I-V loops, while two types of defective devices – those work-
ing with smaller resistance ratio (Defective (I)) and LRS-stuck
(Defective (II)) – showed malfunctioning I-V loops. The device
yield was about 70% (28 normal devices observed among 40
total devices). Although several CBAs possessed more than two
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FIG. 2. Effect of defective devices in CBAs on electrical characteristics by measuring the switching curves of the Ti/HfO2/Ti devices in 2x2 CBAs. The inset is a schematic
illustration of 2x2 CBA showing that the four devices were working. Each device was marked by green, yellow, and red based on the status of the resistance switching
properties as working normally (Normal), working with small resistance ratio (Defective (I)), and broken-down (Defective (II)), respectively.

defective devices, normal devices still worked effectively. By con-
trast, 2×2 CBAs with EF memristor (Ti/HfO2/Pt) showed much
larger device variability with defective devices. The EF process and
typical I-V loops measured from EF memristor (Ti/HfO2/Pt) are
presented in Fig. S2 of supplementary material. The low variability
and higher device yield in a CBA are crucial factors for application
to the BNNs.

It is believed that the EF process could affect device variability
because a different nature (position, size, composition, etc.) of CF
is generated in the individual device during the EF process. Gener-
ally, the EF process demands a higher voltage than that of resistive
switching in a functioning device. A potential issue of the EF pro-
cess in a CBA is that the high voltage and long stress time (owing
to the long integration time and multiple steps of DC sweep mea-
surement protocol) may induce a large discharging current – from
the capacitor-like memristors and parasitic capacitive elements in
a CBA – passing through the electroformed device during the EF
process.25 From a material perspective, the EF-free device initially
possesses a large amount of oxygen-related defects, such as oxy-
gen vacancies, in the interface of the reactive metal (Ti) and insu-
lator (HfO2) of the top and bottom electrodes. The fact that the
ALD process slightly oxidized the underlying metal (Ti) layer could
lead to an asymmetric relationship between the top and bottom
electrodes for the BRS and also provide necessary oxygen vacan-
cies.26,27 In addition, the lower barrier height of Ti/HfO2 could
also induce a fluent electron injection from the electrode to the
insulator, which resulted in the facile formation of CF without the
aid of the high electric field-induced EF process in EF memristor
(Ti/HfO2/Pt).

Figure 3(a) and (b) show the changes in the I-V loops of EF-free
and EF memristor devices in 2×2 CBAs with increasing numbers
of defective cells. Even one normal EF-free device with three defec-
tive cells (mixed with type I and II defective cells) shows almost
similar I-V loops, as shown in Fig. 3(a). By contrast, an EFmemristor
device exhibited memristive I-V loops with large variation with one
defective neighboring cell, as shown in Fig. 3(b). However, normally
working device showed leaky I-V curves when it was surrounded by
three defective cells in a CBA. It appeared that the normal device
was misled to an LRS-stuck state, which means that no bias was
applied to the selected device in the HRS since the short circuit was
created by three neighboring cells in a broken-down state (type II).
HSPICE modeling was performed in order to confirm the effect of
neighboring cells in defective states (type I and II). Here, the resis-
tance was set to 141 × 103 and 990⌦ for HRS and LRS in a nor-
mal cell, respectively, 18.6 and 1.6K⌦ for HRS and LRS in a type
I defective cell, respectively, and 180⌦ for a type II defective cell.
Fig. 3(c) shows that a normal cell can work with a lower resistance
ratio, even when it is surrounded by one type I and two type II
defective cells. However, three type II cells can prohibit the work-
ing and reading of normal cells due to the formation of a short
circuit through the sneak path, as shown in Fig. 3(d). Therefore, it
was considered that the sneak path current issue could be mitigated
in a CBA consisting of EF-free memristors because of the higher
device yield, lower variability, and less severe malfunction (e. g. hard
break-down).

An EF-free memristor was applied to the BNN for sim-
ple pattern recognition. Fig. 4(a) shows a schematic diagram of
BNN with double-column CBA to calculate binary synaptic weights
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FIG. 3. Variation of I-V loops with an increasing number of defective devices in 2x2
CBAs. (a) I-V loops for forming-free devices (Ti/HfO2/Ti). (b) I-V loops for electro-
formed devices (Ti/HfO2/Pt). HSPICE simulation result of I-V loops for a normal
EF device surrounded by (c) two defective (I) cells and one defective (II) cell, and
(d) three defective (II) cells.

of +1 and -1.21 In this simulation, a single EF-free memristor
device was used for two 3×3 CBAs to form a BNN hardware.
Memristors can be programmed to either HRS or LRS correspond-
ing to the conductance of gHRS or gLRS, respectively. Such a con-
ductance could be the synaptic weight between the input and out
patterns. The binary synaptic weights (HRS or LRS) are stored on
the CBA in BNN. In this work, BNN is composed of a double-
column CBA for simulation. In Fig. 4(a), the inverted synaptic
weights for the left column in the M+ CBA are stored in the right
column in the M- CBA. The input pattern represents the input neu-
rons delivering voltage pulses to the CBA. The input pattern as a
vector, [x1, x2, x3], can be multiplied to the corresponding synap-
tic weights, [g1, g2, g3] in the M+ and M- CBAs, resulting in the
summation of current in the same columns corresponding to the two

CBAs. Then, the column current is converted to a voltage according
to the activation function, such as ReLU (rectified linear unit) or Sig-
moid function. As such, the output vector, [y1, y2, y3], could be used
as an output neuron or a hidden neuron for the next layer in a BNN.
In the general form, the jth output neuron, yj, can be formulated
with the following equation;

yj = f {�n
0(xi ⋅ gi,j+ − xi ⋅ gi,j−)} = f {�n

0 xi ⋅ (gi,j+ − gi,j−)} (1)

Here, gi,j+ and gi,j- are the conductance representing a synap-
tic weight of either +1 or -1 in the M+ and M-, respectively. f
means the activation function of the neuron circuits. Since gLRS
is greater than gHRS, (gi,j+-gi,j-) can be approximated by +gLRS or
–gLRS, which can be interpreted as +1 or -1. By using a double-
column scheme, conductance or synaptic weight could be clearly
differentiated.

As an exemplary work, three patterns of [LRS-LRS-LRS], [LRS-
LRS-HRS], and [HRS-LRS-LRS] were programmed on the first, sec-
ond, and third columns, respectively, of the M+ CBA. Similarly,
their complement patterns were stored on the M- CBA, as shown
in Fig. 4(a). Here, the measured conductance values in I-V curves
of EF-free memristor in a normal state were used for simulation.
Fig. 4(b) shows the measured column current of I1+-I1-, where I1+
and I1- represent the first column currents of M+ and M-, respec-
tively. The x-axis represents eight input patterns from [000] to [111].
The measured currents of I1+-I1- for the eight input patterns can be
the values calculated with Eq. (1). Similarly, Fig. 4(c) shows the col-
umn current of I3+-I3-, as measured from the third columns in both
M+ and M-. The measured column currents in Figs. 4(b) and (c) for
the eight input patterns clearly show the Eq. (1) can be calculated
on the M+ and M- CBAs. Therefore, the input patterns of [111],
[110], and [011] are serially identified by the three columns, respec-
tively, in this particular pre-trained weight matrix in CBAs. If the
sizes of M+ and M- CBAs are scaled up larger in terms of the
number of arrays, it becomes possible to calculate the Eq. (1) using
the two CBAs to test more complicated vectors, such as MNIST
(Modified National Institute of Standards and Technology). The
MNIST input vector is composed of 28×28 pixels. Assuming that
there are 1024 hidden neurons, 784 input signals are applied to
784 rows of the expanded M+ and M- CBAs, and accordingly,
1024 column currents for 1024 hidden neurons can be obtained.
The number of input, hidden, and output neurons were 784, 1024,

FIG. 4. Forming-free memristor applied to BNN. (a)
Schematic diagram of the memristor BNN structure con-
sisting of a double-column 3×3 crossbar array. The open
and closed circles represent memristors in HRS and LRS,
respectively. Inverted synaptic weights for the left column in
the M+ CBA are stored in the right column in the M- CBA.
(b) The measured output current for the input voltage ([111])
is consistent with [LRS LRS LRS]. (c) The measured output
current for the input voltage ([011]) is consistent with [HRS
LRS LRS].
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and 10, accordingly, the memristor array size used for the simu-
lation was 784×1024 and 1024×10, for the first and second layers.
Due to the lack of memristor array size, simulation was conducted
based on the single memristor device. By using a certain appropri-
ate activation function, it is possible to map the typical neural net-
works to the CBA architecture. It has been estimated that theMNIST
recognition rate can be as high as 96.1% for these memristor-based
BNNs, despite its adoption of the simple binay weight values.21
When the memristors with a gradual change of conductance were
adopted in a similar network structure, the MNIST recognition
rate can be improved to be slightly better than this memristor-
based BNNs. However, such a task demands more energy and
highly demanding control of the multi-level conductance of the
memristors.

In comparison with the previous work on HfO2-based ReRAM
for CNNs done by Garbin et al. in Ref. 24, there are two main differ-
ent aspects could be highlighted in this work. First, the device stack
of Ti/HfO2/TiN or Ti/HfO2/Pt used in Ref. 24 necessarily demanded
the EF process showing the inverse relationship of time-voltage
dependence. In the case of EF-free Ti/HfO2/Ti in this work, how-
ever, the EF process could be diminished by replacing the inert Pt or
TiN bottom electrode into Ti active metal. In addition, device vari-
ability and failure could be largely improved, which is also important
parameters for the high recognition rate for BNN. Second, although
binary approach was stated in Ref. 24, analog synaptic weight was
still adopted by combining nmultiple binary memristor cells operat-
ing in parallel for utilizing a single analog synapse. On the other con-
trary, BNN used in this work only demands binary synaptic weights
without requiring the calculation of any high-precision multi-bit
numbers.

In summary, EF-free memristor CBAs with Ti/HfO2/Ti struc-
ture were fabricated in micro-scale. As compared to electroformed
memristor with Ti/HfO2/Pt structure, the EF-free memristor in
CBA showed better performance, higher device yield, lower vari-
ability in resistance and switching voltage, and less severe mal-
function, such as hard break-down. Such EF-free memristor CBAs
were applied to the BNN hardware using a two-column scheme.
Eight input patterns were applied to the CBAs with pre-trained
synaptic weights, which resulted in the corresponding pattern
recognition by maximizing the current summation. This simple
memristor CBA with the absence of the selector device or multi-
level operation could significantly reduce the burden for fabri-
cation. It is expected that the EF-free memristor CBA could be
used for a pattern recognition system in edge devices or IoT
applications.

See supplementary material for the supporting information on
the device.
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